Text Passage Classification Using Supervised Learning

نویسندگان

  • Y. Bi
  • S. McClean
چکیده

In this paper, we describe a method for text passage classification or extraction by means of supervised machine learning and analytically identifying passages. The underlying characteristic of the method lies in the utilization of the resulting classification, which leads to the classification of the portion of a document in a high dimensional feature space into a low dimensional space which is composed of the features drawn from the document itself. We also present a preliminary experiment for evaluating the performance of this method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multi label Text Classification Model using Semi supervised learning

Automatic text categorization (ATC) is a prominent research area within Information retrieval. Through this paper a classification model for ATC in multi-label domain is discussed. We are proposing a new multi label text classification model for assigning more relevant set of categories to every input text document. Our model is greatly influenced by graph based framework and Semi supervised le...

متن کامل

Combining Unigrams and Bigrams in Semi-Supervised Text Classification

Unlabeled documents vastly outnumber labeled documents in text classification. For this reason, semi-supervised learning is well suited to the task. Representing text as a combination of unigrams and bigrams has not shown consistent improvements compared to using unigrams in supervised text classification. Therefore, a natural question is whether this finding extends to semi-supervised learning...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Optimization of Text Classification Using Supervised and Unsupervised Learning Approach

Text Classification, also known as text categorization, is the task of automatically allocating unlabeled documents into predefined categories. Text Classification means allocating a document to one or more categories or classes. The ability to accurately perform a classification task depends on the representations of documents to be classified. Text representations transform the textural docum...

متن کامل

Text classification from unlabeled documents with bootstrapping and feature projection techniques

Many machine learning algorithms have been applied to text classification tasks. In the machine learning paradigm, a general inductive process automatically builds a text classifier by learning, generally known as supervised learning. However, the supervised learning approaches have some problems. The most notable problem is that they require a large number of labeled training documents for acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999